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Traffic flow models recently discussed in the literature are mostly centered on either cellular automata or the
hydrodynamic analog. The present paper reconsiders the approach of Prigogine and Herman@Kinetic Theory of
Vehicular Traffic ~American Elsevier, New York, 1971!#, which hinges on the distribution function
f (x,v,t). While the work of Prigogine and Herman is anab initio treatment, this paper presents an empirical
alternative analysis regarding the fundamental diagram as an input quantity. With a series ansatz, solutions for
f in both, the stationary and time-dependent case, can be obtained. A number of traffic phenomena are shown
to be reproduced.@S1063-651X~96!02612-8#

PACS number~s!: 05.90.1m, 05.20.Dd

I. INTRODUCTION

Current research in vehicular traffic phenomena is con-
ducted within several rather well-established approaches.
Macroscopic model building@1,2# ~going back to the land-
mark paper by Lighthill and Whitham@3#!, on the one hand,
mainly employs the analogies between certain averaged
properties of traffic flow and hydrodynamics. This approach
necessarily disregards details of the microscopic processes of
driving that enter only in averaged form. Although, e.g., the
hydrodynamical laminar-turbulent transition successfully de-
scribes jams unexpectedly on an infinitely extended single
lane@1#, it has to be cautioned that the driver-car unit differs
drastically from a particle in a liquid. Energy and momentum
conservation are not maintained, the driving forces remain
unclear, and crossroads and traffic rules cannot be translated
into hydrodynamic language at all. Also, the notion of a
‘‘flow’’ generated by the motion of individual vehicles is
generally problematic because of the coarse-grained structure
of the problem. Furthermore, the so-called fundamental dia-
gram v̄5V(c), the relation between mean velocityv̄ and
concentrationc, has to be given as input, whereas in anab
initio theory it would have to be the consequence of micro-
scopic interactions.

Microscopic modeling, on the other hand, generally starts
from car-following dynamics where the individual motion is
essentially a reaction to the behavior of the car in front with
kinematic restraints such as engine power, delay times, and
traffic rules. Dynamics of this type may be expressed in an
oversimplified yet computer-friendly manner via cellular au-
tomata@4–6# or in more detail to achieve realistic results@7#.
Models of such a structure have been successfully applied to
jam phenomena and the explanation of the fundamental dia-
gram. In any case, however, microscopical simulations soon
reach computational limits, which imposes restrictions on the
models: Either they have to be kept too simple for any real-
world significance or closing relations are introduced that are
open to ambiguity. Furthermore, car-following dynamics
take into account only pair interactions~i.e., with the car in
front! and systematically ignore collective effects such as,
e.g., the ‘‘pressure’’ exerted by the local density of traffic.

Following the landmark book by Prigogine and Herman
@8#, this paper will be based on the observation that the dis-

tribution functionf (x,v,t), giving the number of cars at time
t in the phase-space interval@$x,v%,$x1dx,v1dv%#, can act
as a bridge between macroscopic and microscopic theories
such as, for instance, in conventional kinetic gas theory.

Starting on the microscopic side,f can be thought of as
the result of simple counting. If a set of rules is given, the
change of population in a stretch of road@x,x1L# within a
certain time interval determinesf . If then the length scale
L is chosen to be of typical vehicle dimensions, a cellular
automaton naturally arises.

In contrast, the moments*dvvn f give the averaged quan-
tities a macroscopic~or hydrodynamic! theory is built upon.
For instance,n50 is associated with the concentration
c(x,t), n51 with the mean velocityv̄(x,t), n52 with the
velocity variance, and so forth. Although the infinite series
n→` could, in theory, provide an exact description of the
problem, practical calculations will break off at some finite
n* , thus compromising the accuracy. The significance of the
distribution function moments will, further below, be an ar-
gument for a series ansatzf5(un(v)An(x,t).

II. DISTRIBUTION FUNCTION PROPERTIES

Let us first define the understanding and treatment of the
distribution functionf throughout this paper. The traffic situ-
ation under investigation shall be the evolution of some ini-
tial distribution propagating in one direction along a homo-
geneous stretch of road, i.e., no crossroads, oncoming traffic,
or other obstructions shall be considered. Following Prigog-
ine and Herman@8#, the starting point for the analysis of the
distribution functionf for such a problem shall be the equa-
tion
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Note that the distribution of desired speedsf 0, as well as the
time scalet appearing in Eq.~1!, is a macroscopic notion
such that averaging overv gives the Navier-Stokes equation
for traffic:
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As already argued in the Introduction, Eq.~2! is the second
of a chain of equations for the moments off :

c~x,t !5E dv f ~x,v,t !,

v̄~x,t,!5E dvv f ~x,v,t !,

~3!

v22 v̄25E dv~v2 v̄ !2f ~x,v,t !,

•

•

•

•

The equation corresponding toc is the continuity equation
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50. ~4!

All hydrodynamic models@9,1,2# derive via inclusion of cer-
tain interaction terms and more or less restrictive assump-
tions from ~2! and ~4!. Although, consequently, Eq.~1! has
thus to be regarded as a macroscopic equation, it is poten-
tially richer than equations of the same type as~2! and ~4!
because certain microscopic features can still be included, as
shall be seen further below.

Let us now discuss the ingredients of Eq.~1!. The mac-
roscopic time scalet governs the relaxation process from a
given f onto f 0. In a microscopical picture,t would result
from averaging over all partial processes such as braking,
accelerating, reaction on fluctuations, and delay times. Hence
a simple relaxation form as in Eq.~1! has to be thought of as
a rather crude macroscopic limit. It is possible to devise
more sophisticated relaxation laws~one possibility will be
given in Sec. III A!, but the general assumption, namely, that
global time scales for the evolution of the distribution func-
tion as a whole exist, cannot be circumvented and is, within
this model, thought to cover all essential effects in traffic
flow phenomena.

Equation~1! further assumes that there is a ‘‘program’’
drivers wish to follow, a distribution of desired speedsf 0.
The form of Eq.~1! would imply that f 0 is the equilibrium
distribution. This interpretation, though perfectly valid in the
gas kinetic analog of~1!, is, however, rather problematic in
the context of traffic flow. For instance,

f stat~x,v,t !5 f stat~v,c! with c5const ~5!

is a stationary solution of~1!. Given an initial concentration
different from zero only in some finite stretch of road, it is
clear immediately that the homogeneous limit~5! will not be
reached in the upstream regions of the initial cluster. This
leads back to one of the principal problems of a physical
traffic flow theory: Due to the absence of genuine molecular
chaos, the existence and the definition of an equilibrium state
of traffic are unclear~apart, of course, from the trivial equi-
librium of standing traffic!. It follows from this consideration
that Eq. ~1! can be regarded as useful only in a temporal
regime where fluctuations are absorbed in a local equilibrium

form f 05 f 0„v,c(x,t)…. Solutions nearc5const on the entire
lane considered will have to be regarded as unphysical. In-
herent in Eq.~1! is, furthermore, an ambiguity in the under-
standing off 0, which will be discussed in the following sec-
tion.

III. DESIRED SPEED DISTRIBUTION
AND FUNDAMENTAL DIAGRAM

A. Ambiguity of desired speed distribution

The distribution of desired velocities can be understood in
either of the following ways.

First, f 0 gives the distributions drivers would assume in a
noninteracting traffic situation, i.e., in dilute traffic. Then
only car characteristics and driver preferences would make
up the statistics off 0. This approach has been adopted by
Prigogine and Herman@8#, who therefore needed to include
an additional interaction term on the right-hand side of the
evolution equation~1!:
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1~12P!c~ v̄2v ! f , ~6!

P being the probability of passing. The stationary solutions
~5! in the reasoning of Prigogine and Herman then arise from
this interaction in the homogeneous limit:

f stat5 f stat„f 0
stat~v !,c…,

f stat5
f 0
stat

12ct~12P!~ v̄2v !
. ~7!

The interaction term itself is found in analogy to the Boltz-
mann collision term in gas kinetics. It should be noted that
this approach, starting from noninteracting vehicles and
some form of interaction, is genuinelyab initio.

Second,f 0 is taken in such a form that the density depen-
dence as in~7! is already acknowledged:

f 05 f 0~v,c!. ~8!

The form ~8! takes the interactions implicitly into account.
This leaves Eq.~1! in its simple form. Instead of the inter-
action term, however, some other sort of input is needed to
determinef 0. The appropriate choice is the center piece of
traffic engineering, the fundamental diagramv̄5V(c), relat-
ing the mean velocity to the traffic density. This relation
itself has been the subject of a substantial body of work~see,
for instance,@10#!. In this paper it shall be assumed to exist
and have the form of the fit given by Kerner and Kohnha¨user
@1#:

V~c;v0 ,cmax!5v0S H 11expF S c

cmax
20.25D Y 0.06G J 21

23.7231026D . ~9!

Although this second definition of the desired speed distri-
bution is anempirical one and thus methodically inferior to
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that of Prigogine and Herman, the conserved simple form of
~1! and the accurate fit~9! make it more suitable for analysis.

Both approaches have, of course, to be equivalent in the
ensuing physics. This is achieved by identifyingv̄ in the first
moment of~7!

v̄ ~0!5 v̄1t~12P!c~v22 v̄2!, ~10!

with theV(c) of ~9!.
Let us define, then, that throughout this paperf 0 shall be

understood to be of the form~8!. The method to employ a
simple theory with complicated interaction effects taken into
account with some appropriately defined effective quantities
has been proven to be a successful first approximation in
many areas of physics such as, e.g., effective ionization en-
ergies in plasma physics and effective radii of interaction in
nuclear physics.

B. Series representation off 0

With the ansatz

f 0~v,c!5 (
n51

`

un~v !An
~0!~c!,

un5A2

p
sinu, ~11!

u5
2v2vmax2vmin
vmax2vmin

,

it is now straightforward to findf 0 via its moments. We
stress again that, in the above-defined picture, its principal
feature is the incorporation of the fundamental diagram~9!
that will enter in the first moment. The zeroth moment is
given by the density and the higher ones determine the sta-
tistical properties. With the physical request that

v̄6A(v22 v̄2) be positive, one finds, up to second order,

A1
~0!5A2

p

2c

vmax2vmin
,

A2
~0!5A2

p

8c

~vmax2vmin!
2 SV~c!2

vmax1vmin
2 D ,

A3
~0!5A2

p

32c

~vmax2vmin!
3

3$V~c!@vmax1vmin2V~c!#1h~c!%,

~12!

h~c!5h0S V~c!

V~0! D
g

2
vmax

g V~c!@vmax2V~c!#

V~c!1vmax
g ,

h05~v22V2!uc502V~0!@vmax2V~0!#F12
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g
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g G ,

A4
~0!50.

In ~12!, g is a numerical parameter andh(c) an auxiliary
function to ensure the above-mentioned property of the ve-
locity variance and smooth numerical behavior. Figure 1
shows thef 0 according to~12!. The nonsensical negative
values are due to the relatively early breakoff of the series
~11!. This drawback can be easily corrected in more ambi-
tious actual simulations. Since the purpose of the present
work is rather to highlight the theoretical aspects of an
f -based traffic flow theory, the given form off 0 may be
sufficient. We stress that the characteristics of the fundamen-
tal diagram—higher traffic density forces the velocity expec-
tation value to decrease—are clearly apparent in Fig. 1.

Figure 2 shows the fundamental diagram according to~9!
with the corresponding variance. The parameterg52 has
been chosen to have monotonic behavior of the variance and
(v22 v̄2)uc50520.467 km/h for the variance of the noninter-
acting traffic.

IV. MODE SOLUTION FOR THE DISTRIBUTION
FUNCTION

A. Analytical results

The representation~11! and ~12! of the stationary, or
‘‘equilibrium,’’ distribution of desired speeds in the defined
understanding suggests a similar treatment of the full time-
and space-dependent equation~1!. In fact, the definitions of
~11! can be fully adopted once the substitution

An
~0!~c!→An„c~x,t !… ~13!

is made. The above form clearly displays the local equilib-
rium character of the solution.

Equation~1! itself transforms into

F ]
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]x
@An211An11#

1
An2An

~0!
„cref~x,t !…

t
50, ~14!

where n>1, An
(0) is the corresponding mode off 0, and

A050 per definition.
Equation~14! demands several comments. First, it has to

be pointed out that the nonlinearity problem in~1! has been
transformed into simple mode coupling within an infinite

FIG. 1. Equilibrium distribution functionf 0(v,c).
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chain of equations. Second, the relaxation term has been
written in a form that allows one to stretch the concept of
local equilibrium. InAn

(0)
„cref(x,t)… a reference densitycref

has been introduced in order to take into account some pe-
culiarities of the traffic situation:

cref~x,t,!5
1

LEx
x1L

dxc~x,t !. ~15!

In the ansatz~15! it has been acknowledged that the indi-
vidual driver will react to a certain traffic density not only at
his immediate positionx, but within a certain neighborhood,
characterized by the typical lengthL. Furthermore, the driver
will be influenced only by the state of traffic in front of it,
thus the averaging over the interval@x,x1L#. The eventual
stationary solutionf stat(v,c5const) and the conservation of
the number of vehicles will not be affected by the prescrip-
tion ~15!. In the interesting temporal regime, and in marked
difference to the hydrodynamical models, it can, however, be
expected that the microscopic features of traffic flow taken
into account via~15! improve the consistency of the model.
It is this kind of pseudomicroscopic theory buildup that
seems to support the distribution functionf as the central
entity of traffic flow modeling. With the strict local equilib-
rium from macroscopic theory one would have the constraint

E dvA1
~0!
„v,c~x,t !…5E dvA1~x,t ! ~16!

in order to reproduce the densityc(x,t). This would lead to
a different equation forA1 due to the absence oft. The
actual processes of driving embedded in a stream of cars
seems to be better modeled, though, with the more flexible
reference densitycref .

By a similar reasoning, Eq.~14! allows for individual re-
laxation timestn for the different modesAn . Such a model
refinement would correspond to grouping the relaxation pro-
cesses with respect to their significance for the respective
modes. Although such a procedure cannot recover the true
microscopic processes, it is certainly closer to reality than a

global time scalet. ~For simplicity reasons, however, this
paper shall be restricted to just one time scale.!

Analysis of~14! is facilitated by a Fourier-Laplace trans-
formation with respect to time and space:

Am̂̃5
1

A2p
E

2`

1`

dxe2 ikxE
0

1`

dte2stAm~x,t !. ~17!

Then Eq.~14! transforms into

An̂̃Ft211s1
ik

2
~vmax1vmin!G

5Bñ2
ik

4
~vmax2vmin!@An2 1̂̃1An1 1̂̃#1

An
~0 !̂̃

t
. ~18!

Here theBñ denotes the spatial Fourier transform of a given
initial modeBn(x)5An(x,t50).

It is now possible to obtain a formally exact solution of
Eq. ~18! ~for details see the Appendix!

An~x,t !5e2t/tHBnS x2
t

2
~vmax1vmin! D 2

vmax2vmin
4

3E
0

t

dzez/t
]

]x
@An211An11#x2~ t2z!/2~vmax1vmin!

1
1

tE0
t

dzez/tAn
~0!S x2

t

2
~vmax1vmin! D J . ~19!

The stationary limitt→` is immediately apparent in~19!:
The initial distribution$Bn% dies off exponentially, the spa-
tial derivatives vanish, and the solution is eventually given
by An

(0)
„v,c(x,t)→const…. The complexity of the solution is

largely given by the mode coupling term and the response
integrals in the second and third terms on the right-hand side
of ~19!.

FIG. 2. Fundamental diagramV(c) with variance,v05100
km/h andkmax5200 vehicles/km.

TABLE I. Values of parameters used in various figures.

Parameter Units Figures

homogeneous 10 vehicles/km 3–6
background
concentrationcbg

90 vehicles/km 7 and 8

location of initial 120 m 3, 4, 7, and 8
velocity distribution
maximum

80 m 5 and 6

location of initial 110 m 3, 4, 7, and 8
variance distribution
maximum

90 m 5 and 6
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The practical value of this exact solution is limited due to
the interdependence of the modes that reflects the original
nonlinearity of the evolution equation. If, however, at some

time t* the state of the system is given, a Taylor expansion
of ~19! provides an infinitesimal evolution operator. Within
first order in a time incrementD we have

An~x,t*1D!5e2~ t*1d!/tBnS x2
t*1D

2
~vmax1vmin! D 1e2t* /tS 12

D

t D E
0

t*
dz

3ez/tF2
vmax1vmin

4
]x~An211An11!x2~ t*2z!/2~vmax1vmin!

1
1

t
An

~0!S x2
t*1D

2
~vmax1vmin! D G

1D@]x~An211An11!x1An
~0!~x!#1De2t* /tE

0

t*
dzez/tFvmax2 2vmin

2

4
]x
2~An211An11!x2~ t*2z!/2~vmax1vmin!

2
vmax1vmin

2t
An

~0!S x2
t*1D

2
~vmax1vmin! D G . ~20!

With ~20! as the computational prescription, it is possible to
perform numerical simulations of the evolution of certain
traffic situations. In the following a number of characteristic
cases are shown.

B. Numerical results

The test cases of calculations on the basis of~20! in this
section have been chosen so as to highlight typical problems
of traffic evolution. Basis of the computations are the first
three momentsAn , n51,2,3 equivalent to the treatment of
f 0 in Sec. II A. It is clear that this level of accuracy will not
be sufficient for realistic simulation; numerical errors, espe-
cially oscillations, will have to be expected. Nevertheless,
these examples clearly show that the formalism presented is
able to reproduce a number of characteristic features. The
simulation shows the evolution of an initial population over
t54 sec on a stretch of road of lengthx5500 m. Because of
the mode decomposition it is particularly easy to identify
effects of inhomogeneities in concentration, velocity, and
variance. Their initial distributions have been chosen to be
Gaussian shaped with the same width and variable location
as that of the maximum.

The following parameters have been left constant
throughout all runs: velocity range,vmin50<v<vmax535
m/sec; free traffic speed inf 0, v0527.78 m/sec; saturation
vehicle concentration,cmax5200 vehicles/km; numerical fit
parameter inf 0, g52; forward averaging interval according
to ~15!, L520 m; a Gaussian-shaped initial concentration
distribution with maximum c(x5100m, t50)5100
vehicles/km; a Gaussian-shaped initial velocity distribution
with maximum v527.78 m/sec; a Gaussian-shaped initial
velocity variance distribution with maximum varv5209.16
m2/sec2; and relaxation timet55 sec. The values of the
varied parameters in the respective figures is given in Table
I.

Figures 3 and 4 show the evolution of the concentration
and velocity of an initial distribution where the fastest cars
are 20 m ahead of the highest density and the background
concentration is low. The result for the concentration~Fig. 3!

shows a decomposition: a gap arises between bulk and lead-
ers. Furthermore, the initial concentration peak flattens out;
after 4 sec the maximum density has fallen from 100
vehicles/km to just about approximately 50 vehicles/km. In
the corresponding velocities~Fig. 4! it can clearly be seen
that areas with high traffic density have low mean speed and
vice versa. The simulation also correctly reproduces an in-
creasing velocity of the dilute background: these cars try to
assume their equilibrium speedV(cbg). The cars on the slow
shoulder of the Gaussian hardly move at all.

In Figs. 5 and 6 the asymmetry of the velocity and vari-
ance has been mirrored: the fastest car and the variance
maximum are now upstream of the highest density. This re-
sults in a temporarily increasing density when the faster cars
overtake the bulk. After this the same clustering as in Fig. 3
occurs where the main peak retains a slightly higher value
due to the cars still overtaking from behind. To the process
of overtaking corresponds a fall in the mean speed, as can be
seen in Fig. 6, since the faster cars are obstructed by dense
traffic. In the contrasting case~Fig. 4!, the fastest cars have
diminishing traffic density in front of them and are thus less
affected by interaction. It has to be cautioned, though, that
the maximum appearing for higher times in Fig. 6 is a nu-
merical artifact.

FIG. 3. Low background density, velocity, and variance maxima
downstream.
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In Figs. 7 and 8 the locations of the concentration, veloc-
ity, and variance distributions are the same as in Figs. 3 and
4; the concentration peak value has been left at 100 vehicles/
km, but the background density has been set atcbg590
vehicles/km. In this case the small density fluctuation reveals
a supercritical condition and leads to a jam, i.e., a density
increase. The same behavior has been observed in@1#. In
comparison with Fig. 3, it can be stated that the same fluc-
tuation amplitude can lead to completely different states of
traffic, indicating a phase transition. Such a transition, being
of nonequilibrium nature, is not easily defined. The shape of
the fluctuations as well as the multitude of environmental
parameters will influence the outcome, such that the critical
background densitycbg

crit that separates the relaxation and
congestion regimes, will be a complicated functional

cbg
crit5cbg

crit@$An%;P#.

whereP denotes parameters. For the time being we restrict
ourselves to the statement that the simple analysis carried out
above is capable of describing this criticality. Figure 8, con-
trary to Fig. 4, also clearly shows the decreasing mean speed
of the dense background traffic according to the fundamental
diagram.

Other tests have been carried out, but were not shown
here in order to maintain clarity of the representation. For
instance, the relaxation timet has been varied and, as ex-
pected, a slower decrease of the concentration peaks with
otherwise topologically equivalent behavior for highert was
established. In order to restrict the parameter variations to
relevant cases, more work needs to be carried out in the

diagnostics of traffic phenomena. New measurements
@11,12# may provide a useful basis for such future investiga-
tions.

CONCLUSION

The aim of this paper was to revive the distribution func-
tion f (x,v,t) as the center piece of a traffic flow model. The
basis of the analysis is the~formally! interaction-free macro-
scopic equation~1!, which thus facilitates a simple analysis.
The interactions have been incorporated via the so-called
fundamental diagram in the ‘‘equilibrium’’ distributionf 0. In
contrast to the approach from first principles of Prigogine
and Herman, our theory has to be labeled empirical since the
interactions are described by the measured relation
v̄5V(c). Justification for such an approach lies in the ill-
defined nature of microscopical interaction, the credibility
improvement ifV(c) is acknowledged, and the analytical
progress that can be made. By means of a mode decoupling,
i.e., a series ansatz for the distribution functionf (x,v,t), the
moments off and their behavior can be easily identified. A
rather crude numerical evaluation already reproduces typical
traffic features. Of special importance is the observed criti-
cality with respect to fluctuations on a homogeneous back-
ground density. Future work will have to dwell on this phe-
nomenon.

Although the numerical studies presented have been re-
stricted to a rather limited problem, it has to be stressed that
the distribution functionf can provide a route to real-world
simulations. Crossroads, traffic lights, and similar topologi-

FIG. 4. Low background density, velocity, and variance maxima
downstream.

FIG. 5. Low background density, velocity, and variance maxima
upstream.

FIG. 6. Low background density, velocity, and variance maxima
upstream.

FIG. 7. High background density, velocity, and variance
maxima downstream.
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cal singularities just have to be translated into prescriptions
of how to alter the number of vehicles at timet and space
point x. These rules combined with the flow propagation
according to the presented analysis will lead to realistic mod-
els. As commented before, the use of the distribution func-
tion f and its mode decomposition allows for pseudo-
microscopic model refinements such as different relaxation
times or effective interaction radii. True microscopic behav-
ior cannot, of course, be described with an equation such as
~1!. Since, however, the microscopic processes of vehicle
driving seem to lie beyond the realm of physics, an argument
arises whose approach, on the basis of averaged quantities
such as, e.g., the fundamental diagramV(c), may be more
reliable.

Finally, the problems of traffic flow modeling should be
put in perspective since the harder problems of modeling
seem to concern topological issues~crossroads, path choice,
etc.! such as, for instance, those addressed in@13,14#. It may
be summarized that realistic models of vehicular traffic with
prognostic power still pose a great problem that can, within
certain limits, be tackled with the use of theoretical physics.

APPENDIX

Starting with Eq.~18!, the solution in Fourier-Laplace
space is obtained immediately:

An̂̃5

Bñ2
ik

4
~vmax2vmin!@An2 1̂̃1An1 1̂̃#1t21Am

~0 !̂̃

s1t211
ik

2
~vmax1vmin!

5T11T21T3 . ~A1!

Note that theBñ arise from

] tAn̂̃~k,s!52Añ~k,t50!1sAn̂̃~k,s!.

The first term on the right-hand side,T1, is independent of
time t and its Laplace conjugates transforms as a simple
translation

F21L21@T1#5e2t/tBnS x2
t

2
~vmax1vmin! D . ~A2!

The inverse Laplace transformation of the second and third
terms on the right-hand side of Eq.~A1!, T2 andT3, involves
a convolution, but is otherwise straightforward. With

]xAn̂̃5 ikAn̂̃ ,

one finds

F21L21@T2#52
vmax2vmin

4 E
0

t

dze2~ t2z!/t

3]x@An211An11#x2~ t2z!/t~vmax1vmin!
,

F21L21@T3#5E
0

t

dz
1

t
e2~ t2z!/tAn

~0!S x2
t

2
~vmax1vmin! D .

~A3!

Putting together~A2! and~A3!, one arrives at the final result
~19!.
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FIG. 8. High background density, velocity, and variance
maxima downstream.
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